
Toward an Automatic, Online Behavioral Malware
Classification System

Raymond Canzanese and Moshe Kam
Dept. of Electrical and Computer Engineering

Drexel University
Philadelphia, PA, USA

{rcanzanese,kam}@minerva.ece.drexel.edu

Spiros Mancoridis
Dept. of Computer Science

Drexel University
Philadelphia, PA, USA

spiros@drexel.edu

Abstract—Malware authors are increasingly using specialized
toolkits and obfuscation techniques to modify existing malware
and avoid detection by traditional antivirus software. The re-
sulting proliferation of obfuscated malware variants poses a
challenge to antivirus vendors, who must create signatures to
detect each new malware variant. Although the many variants
in a malware family have different static signatures, they share
characteristic behavioral patterns resulting from their common
function and heritage. We describe an automatic classification
system that can be trained to accurately identify new variants
within known malware families, using observed similarities in
behavioral features extracted from sensors monitoring live com-
puters hosts. We evaluate the accuracy of the classifier on a
live testbed under a heavy computational load. The described
classification system is intended to perform classification online,
using the computed classes of newly detected malware variants
to guide the automatic mitigation of infected hosts.

I. INTRODUCTION

Malicious software or malware are designed to perform
various malevolent tasks, such as providing unauthorized
access, stealing confidential information, or disrupting the
normal operation of computer systems. The traditional de-
fense against malware has been antivirus software, which use
static signatures to detect known malware samples. Antivirus
software represent a reactive approach to malware detection,
where detection signatures for new malware are typically
created after the malware have been successfully deployed.
Malware authors are increasingly using specialized software to
create large numbers of obfuscated malware variants to exploit
this weakness and evade detection. In some cases, malware
authors have released tens of thousands of variants of a mal-
ware sample in rapid succession in an attempt to overwhelm
antivirus vendors [1]. Malware authors have also developed
metamorphic and polymorphic malware, which automatically
modify themselves as they propagate [2].

The continuing rise of obfuscated malware variants presents
challenges both to antivirus vendors, who must analyze, clas-
sify, and create signatures for each newly discovered malware
variant; and system administrators, who must find ways to
defend their computer systems against the influx of malware
variants that evade traditional detection mechanisms. Our
research focuses on the latter problem, that of defending com-
puter systems against previously unseen malware, especially
malware that are variants of, or behaviorally similar to, known

malware. Accordingly, our goal is to create self-protecting
servers that can quickly detect the execution of new malware
variants, classify them according to their behavior, and use the
computed classes to guide the automatic mitigation of infected
hosts.

Whereas our previous work has focused the problem of
behavioral malware detection [3], [4], this study focuses on the
problem of classification. That is, given that we have detected
a new malware sample, can we quickly and accurately classify
the malware in order to determine its category (e.g., Trojan,
rootkit, worm) or family (e.g., ZBot, Fynloski, Kelihos)?
We present the design and experimental evaluation of an
online, host-based malware classification system, making the
following contributions:

• Feature Selection: We select a set of observable features
that are easily extracted with minimal overhead from
live computer hosts, and whose values can be used to
infer whether a detected malware sample belongs to a
particular category or family. We evaluate three different
types of features in terms of their usefulness for malware
classification, namely data collected from performance
monitors that report resource usage, the frequency of calls
to specific kernel functions, and the frequency of calls to
specific sequences of kernel functions.

• Classification: We present the design of a classification
system that uses random forests to identify the category
and family of detected malware. The classifier is designed
to classify new malware variants according to their be-
havioral similarity to known malware.

• Experimental Evaluation: We evaluate the accuracy of
the classification system on a corpus of more than
800 malware samples. We perform the evaluation on
a custom testbed designed to mimic the challenges of
online malware classification in a real-world, production
environment.

The remainder of the paper describes the related work in be-
havioral malware classification in Section II, the experimental
setup in Section III, the classification procedure in Section IV,
and the experimental results and analyses in Section V.



II. RELATED WORK

Previous studies of behavioral malware detection and clas-
sification have identified features that provide discrimination
among different classes of malware and benign software,
including sequences of calls to kernel functions [5], resource
monitors [6], and features extracted from static executable
files [7]. Furthermore, there have been efforts to address the
problem of malware classification for reasons of expediting
the analysis of (and signature creation for) newly discovered
malware samples. The classification systems described in this
section are mostly systems designed for such offline analysis
rather than rapid, online classification, which is the focus our
study.

Classification systems generally fall into one of two cate-
gories: those that rely on features extracted from static files,
or those that execute malware and use behavioral features to
classify malware. Static approaches sometimes use low-level
features such as calls to external libraries, strings, and byte
sequences for classification [8]. Other static approaches extract
more detailed information from binaries, including sequences
of API calls, the graphical representations of control flow [9]–
[11], and the structure of the functions composing the malware
[12]. Recent work represents the byte structure of malware
samples as images and uses image classification techniques to
classify the malware [13].

Reliable extraction of the features required for static clas-
sification represents a considerable challenge. Malware are
often encrypted, compressed, or otherwise designed to compli-
cate such analyses. Accordingly, many techniques have been
explored for extracting features from malware while they
execute. A subset of these techniques involve executing the
malware in an isolated sandbox environment and extracting
information about the files, registry entries, and processes
that the malware create or modify [14]–[18]. Another body
of work focuses solely on network-based features, extract-
ing network flow information for classification [19], [20].
Still other techniques include using API hook information to
classify rootkits [21]. Recent work has also been successful
in combining both static and behavioral features to leverage
the strengths of each type of classifier to increase overall
classification accuracy [22], [23].

Our present work draws from previous work, using be-
havioral features previously shown to be useful for malware
detection and classification as inputs to a random forest
classifier. We extend previous studies, which focus on offline
analysis, by focusing our efforts on the online classification of
new, previously unseen malware variants that evade signature
based detection on production hosts. To evaluate the usefulness
of our classification system, we study the performance of the
classifier using five different malware labeling schemes. We
aim to classify new malware variants online as soon as they
are detected to guide immediate, automatic mitigation. Our
goal is to create self-protecting servers that can automatically
detect and mitigate infections caused by previously unseen
malware.

III. EXPERIMENTAL SETUP

This section describes the experimental setup we use to
evaluate the accuracy of the described classification system,
including an overview of the malware testbed, details of the
experimental procedures used for data collection, a description
of the collected features, and a description of the malware
corpus used for experimental evaluation.

A. Malware Classification Testbed

Our malware classification testbed is designed to provide
an environment for testing the malware classification system
that is analogous to the environment under which classification
would occur in a production environment: namely, a noisy
environment where the host computer is performing the heavy
computation necessary to perform its intended function.

The virtual machine (VM) hosts composing the testbed
operate as web and database servers performing a series of
functional tests provided by the Drupal1 Content Management
System (CMS). The test suite provides 55 different categories
of tests, each exercising a different component of the CMS
(e.g., file system access, database operations). Our testbed
continuously executes a randomly selected series of tests. The
result is a complex computational load that varies significantly
in time and complicates classification by introducing signifi-
cant noise into the feature data used for classification. During
testing, each VM starts in a clean state and is infected with
malware at a randomly distributed infection time (5 to 15
minutes after boot), to ensure that the malware infection is
not correlated with any specific system events.

A block diagram of the malware classification testbed is
provided in Figure 1, which indicates the four distinct com-
ponents that compose the system:

• The testing platform hosts a collection of VMs, each
running Microsoft Windows2 Server 2012 and executing
the computation described above. The sensors monitoring
the VMs are installed both on the VMs and on the
testing platform, which is where feature extraction occurs.
During testing, these virtual machine hosts are infected
with malware.

• The network simulator provides means for malware that
normally communicate over the Internet to exercise some
of their network-centric features on our isolated testbed.
It redirects all outgoing network connections to a hon-
eypot. We use the Dionaea3 honeypot, which works by
completing incoming connection requests and attempting
to obtain malicious payloads from connected malware.

• The controller receives the feature data from the testing
platform and performs classification.

• The malware harvester collects malware samples from
the wild to use for testing, using both the Dionaea
honeypot and a custom harvester that downloads files
from blacklisted sites. Each malware sample is analyzed

1Drupal CMS, http://www.drupal.org
2Microsoft, http://www.microsoft.com
3Dionaea low-interaction honeypot, http://dionaea.carnivore.it



Fig. 1. Malware classification testbed

Fig. 2. Self-protecting system showing detector, classifier, and mitigator

to determine its file type, identifying information, and
whether it is detected by various commercial antivirus
software, using the free online scanning service VirusTo-
tal4.

The testbed depicted in Figure 1 is designed for exper-
imental evaluation only. In a production environment, the
malware classification system would be deployed as depicted
in Figure 2. The figure shows a self-protecting system with
a server being monitored by a series of sensors whose raw
feature data are sent to a feature extractor. The feature extractor
processes the raw data and sends the extracted features to
a malware detector. If malware are detected, the malware
classifier is used to classify the malware, and the identifying
information output by the classifier is used to determine
appropriate mitigation. The closed-loop system is designed to
work with both VM and bare metal hosts. Feature extraction,
detection, and classification are all intended to be performed
outside the monitored environment to minimize the risk of the

4Quintero, Bernardo. VirusTotal, http://www.virustotal.com

malware tampering with those components. The focus of this
paper is on the Malware Classifier component of the system
depicted in Figure 2.

B. Features and Datasets

The goal of this work is to classify malware according
to a set of observable features extracted from the hosts on
which the malware execute. In order to be effective for online
malware classification, these features must be easy to extract
and must provide sufficient information to discriminate among
different malware classes. Accordingly, we select three distinct
types of features to use for classification, namely performance
monitor, system call, and system call sequence features.

Performance monitors are a feature of the Microsoft Win-
dows family of operating systems that provide a mechanism
for remote data collection [24]. Available data include CPU,
disk, network and memory usage statistics; information about
individual processes and threads; information about individual
VM instances; and application-specific information, such as
web server and database server statistics. For our study we
consider a set of 653 distinct performance monitor sensors.
This set of sensors was chosen after a preliminary study of
the data reported by all of the available performance monitor
sensors on the described testbed. We eliminated from consid-
eration those sensors that provided monotone non-decreasing
or constant outputs, since those sensors would provide no
discriminability for detection or classification.

Two distinct types of features are extracted from kernel
traces. The system call features are the number of calls made to
each kernel function per second and the system call sequence
features are the number of calls made to each unique sequence
of two kernel function calls per second. Extraction of these two
types of features is performed by a custom-built application
that uses the NT Kernel Tracer provided by the Event Tracing
for Windows (ETW) facility [24] to track kernel function calls.
In total, we observed 235 unique kernel functions and 13,290
unique sequences of two kernel function calls.

For each sensor, we sample the data provided by the sensor
once every second, resulting in a time series of measurements,
one for every second the server is active. For classification, we
divide the time series of data collected from each sensor into
two distinct sets: one set labeled clean, containing the data
collected before the malware sample executes, and another
set labeled infected, containing the data collected after the
sample executes. We refer to the time that the malware begins
execution as the infection time tI .

C. Malware Collection

In order to establish ground truth with which to compare
our classification results, we use the antivirus (AV) scan
results provided by VirusTotal to label the datasets. The AV
results consist of the identifying information associated with
the detection signatures matching the detected malware. This
information typically includes the general category of the
sample, the platform the sample targets, and the malware
family of which the sample is a member. We only consider



1424
197

550

1206

1003

337
3454

Kaspersky
MMPC

McAfee

Fig. 3. Venn diagram showing the relationship among the sets of malware
samples positively identified by three different AV vendors. The values
indicate the number of distinct malware samples in each set.

malware that match one of the detection signatures provided
by Kaspersky Lab5, the Microsoft Malware Protection Center
(MMPC)6, or McAfee.7

Evaluating the accuracy of the classifier is complicated
by the absence of a universal, complete, and consistent la-
beling scheme against which the classification results can
be compared. Incompleteness in the AV labeling schemes
exists where malware detected by one AV vendor are not
detected by another. For example, Figure 3 shows that of the
8,171 identified by at least one of the three vendors under
consideration, only 3,454 samples are identified by all three
vendors, while 2,827 are identified by only one of the three.
Inconsistency in the labeling schemes exists where different
AV vendors classify the same sample as belonging to different
categories and families. For example, one of the malware
samples in our collection is identified as Trojan.Yakes
by Kaspersky, Worm.Gamarue by MMPC, and PWS.Zbot
by McAfee.

For our evaluation, we consider only malware samples in
the portable executable (PE) file format targeting both 32-
bit and 64-bit versions of the Windows family of operating
systems. As part of our preliminary testing, we execute each
of the malware samples in one of the VMs on the testing
platform to ensure compatibility of the sample with our system
configuration. As a result of this testing, we choose 882
distinct malware samples to use in the experimental evaluation.

Since it is not evident whether the labels provided by one
vendor are more accurate than another’s, we consider the
labels provided by each vendor separately, and we consider
the category and family labels separately for each vendor.
We consider five different labeling schemes; namely the cat-
egories reported by MMPC and Kaspersky, and the families
reported by MMPC, Kaspersky, and McAfee. We format the
family names as Category.Family to distinguish among

5Kaspersky Lab, http://www.kaspersky.com
6MMPC, http://www.microsoft.com/security/portal
7McAfee, http://www.mcafee.com

similarly named families from separate categories. We use the
labels from each scheme as ground truth to train and evaluate
the accuracy of the classifier.

IV. CLASSIFICATION

In our previous work, we demonstrated how decentralized
change-point detection algorithms can be used to infer the
execution of malware on a live computer host by detecting
changes in the distribution of performance monitor data cor-
related with malware execution [4]. That system provided
only a binary decision indicating that a computer host is
either clean or infected. Here, we describe how such a system
can be extended to include additional information about the
detected malware, namely its category or family, identifying
information that could help guide mitigation of the infected
host.

We assume that we are using a detection algorithm that can
detect the execution of malware and can infer the approximate
time that the infection occurs. The described classification
methods can be adapted to deal with uncertainty in the
start time by removing from consideration the data samples
collected around the estimated start time.

Once a malware infection has been detected and we know
its approximate start time, we perform classification first by
extracting a new feature vector from a buffer of the most
recent feature data. We consider the time series containing
the T seconds of clean data collected immediately before
the infection time tI and the time series containing the T
seconds of infecteddata collected immediately after tI . We
consider the clean data for the ith feature to be a vector
Xi = {xi,tI−T , ..., xi,tI−2, xi,tI−1} and the corresponding
infected data to be vector Yi = {yi,tI , yi,tI+1, ...yi,tI+T−1}.

For each sensor, we quantify that changes that occur about
the infection time tI and construct a new feature vector V
containing information about that changes that occur for all
of the sensors. First, we consider the normalized change in
the mean of the data for the ith sensor:

mi =
mean(Yi)−mean(Xi)√

var(Xi)
, (1)

where mean(X) is the sample mean:

mean(X) =
1

T

T∑
j=1

xj , (2)

and var(X) is the sample variance:

var(X) =
1

T − 1

T∑
j=1

(xj −mean(X)) . (3)

Next, we consider the change in the variance of the data for
the ith sensor:

vi = var(Yi)− var(Xi). (4)

We form a feature vector V composed of these two quantities,
V = {m1,m2, ...,mN , v1, v2, ...vN}, where N is the total
number of sensors. We construct this vector V separately for



each malware sample and use the resulting set of vectors for
training and testing the classifier. The underlying assumption
for the classification task is that these vectors V contain
information that can be used to discriminate among different
classes of malware. We use the changes in the means and
variances of the feature data that occur about the infection
time tI to build a decision tree for classification.

A. Decision Trees and Random Forests

To perform classification, we use binary decision trees that
use the computed change vectors V as inputs. The binary
decision trees are composed of a set of nodes and edges, where
each interior node represents a simple threshold test performed
using one of the components mi or vi of the vector V ,
each edge indicates whether the threshold was exceeded at a
particular node, and each leaf node corresponds to a label. We
classify newly observed malware by evaluating the decision
tree for the vector V computed for a particular malware
sample, arriving at a leaf node that indicates the computed
class of the newly observed malware.

We take a supervised learning approach to decision tree
creation, wherein we use the AV class or family labels as
ground truth and train the decision tree using the change
vectors V collected for a set of malware samples whose
variants we wish to identify. We use the labeled training data
to construct the decision tree using the CART decision tree
algorithm [25].

The CART algorithm builds decision trees recursively. It be-
gins by considering all of the malware and their corresponding
labels and vectors V at the root node of the tree. It selects a
component of V and a threshold such that after performing
the threshold test on the selected component, the malware are
split into two distinct sets associated with the two children
of the root node. The goal is to select the component and
threshold such that the sets of malware that share the same
label are grouped together after the resulting split. This is
accomplished by selecting a component and threshold that
minimize the weighted average of the Gini impurity of the
two resulting sets. Consider a set of malware X with labels
in the set {c1, c2, ...cK} where K is the number of distinct
labels. We define pck to be the fraction of the malware in set
X with label ck. The Gini impurity G of the set X is defined
as:

G(X ) =
K∑

k=1

pck (1− pck) , (5)

where minimum impurity (0) is achieved when a set contains
only malware samples having the same label. Once a node
contains only malware sharing the same label, it becomes
a leaf node of the decision tree. The algorithm terminates
based on tunable parameters that determine the complexity of
the tree, including the minimum number of training instances
assigned to each leaf node and the minimum number of
training instances required to split a node.

We selected decision tree models for classification due to
the white box decision models they provide, their low com-

putational complexity during classification, and the promising
accuracy they provided during preliminary testing. Since de-
cision trees tend to suffer from overfitting, we use a modified
version of the decision tree classifier, the random forest
classifier [26]. The random forest classifier is an ensemble
learner that trains a collection of decision trees to use for
classification. To ensure that each of the decision trees is
different, the decision tree training algorithm is modified to
consider a only randomly selected subset of features at each
node. To perform classification, the algorithm computes the
predicted label for each individual tree and averages over the
results. In our evaluation, we use the implementation of the
CART decision tree algorithm and random forest algorithm
provided by Pedregosa et al. [27]

B. Feature Selection

In order to prevent over-fitting and reduce complexity, we
performed feature selection prior to our experimental evalu-
ation of the classifier. Feature selection reduces the number
of features that must be monitored, thereby decreasing the
overhead introduced by the monitoring, feature extraction, and
classification components of the system. Feature selection is
accomplished by ranking features according to the amount of
information they convey for the classification task.

We accomplish feature selection using the same random
forest algorithm that we use for classification. We train a forest
of 1,000 randomized trees, and compute the importance of
each feature as a function of the number of times it appears
in each decision tree [27]. We then rank the features in terms
of their importance and select the most important features to
use for classification.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results obtained
using the described classifier on the data gathered using the
testbed. First, we examine the accuracy of the classifier as a
function of the time elapsed between the malware executing
and classification being performed. Next, we present the
accuracy of the system as a function of the number of fea-
tures chosen during feature selection. Finally, we present the
accuracy of the classifier using each of the labeling schemes.
The results presented in this section were obtained using 4-
fold stratified cross validation. For each labeling system, we
considered only those malware classes for which we have four
or more distinct samples sharing the same label.

A. Classification Accuracy vs. Time

First, we examine the effect that the amount of time elapsed
after the infection time tI has on the accuracy of the classifier.
Since our goal is ultimately to use the classification results to
guide automatic mitigation, making a classification decision
as quickly as possible is desired to limit the damaging effects
of the malware.

We define classification accuracy as the fraction of the total
malware samples correctly labeled by the classifier during
cross-validation. We say a malware sample is correctly labeled



Fig. 4. Classification accuracy as a function of the time elapsed between
infection and classification

by the classifier if its computed label matches the ground truth
label under the chosen labeling scheme. Figure 4 shows the
empirical accuracy of the classifier as a function of T , the
number of seconds of feature data collected both before and
after tI used for classification. These results were obtained
using the top 100 of each type of feature chosen during feature
selection. The plot shows that the detection accuracy increases
as a function of time. For both the MMPC category and family
labels, the accuracy reaches 99% of its maximum observed
value after 120 seconds.

Because more accurate results require the malware to be
allowed to execute for a longer period of time, it may
be desirable to perform preliminary mitigation, such as the
isolation or imaging of the infected host, before a more
accurate decision is reached. Furthermore, it may be possible
to make a quicker determination depending on the label of the
detected malware. For example, the classifier correctly labels
all of the Backdoor.Kelihos and Adware.Kremiumad
samples using 60 seconds of data; but requires 120 seconds
of data to correctly label all the TrojanSpy.Zapemli and
TrojanClicker.Clidack samples. These results indicate
that certain families of malware may be more easily dis-
cernible and therefore not require as much time or data to
be correctly identified by the classifier.

The time required to extract the feature data from the
raw sensor data, compute the change vectors, and perform
classification using the current system implementation is under
five seconds. Thus, the low complexity of the decision tree
classification algorithm – O(log(n)), where n is the number
of training samples – enables classification accuracy in excess
of 60% within 125 seconds of the malware executing on the
testbed. Extending the system to use additional features or a
larger corpus of training data will result in a more complex
decision tree an an increased classification time.

B. Feature Selection

The accuracy of the classification system is largely depen-
dent on the choice of features. Choosing too few features leads
to insufficient discrimination among classes while selecting

Fig. 5. Detection accuracy comparison for different feature sets

too many features introduces unnecessary overhead and leads
to overfitting. Figure 5 shows the detection accuracy of the
classifier as a function of the number of features chosen from
each type for the MMPC family labels. The features are chosen
in order of decreasing importance, using the importance values
computed during feature selection. These results were obtained
using T = 120 seconds of data.

Figure 5 indicates that the system call sequences provide
the most discrimination among the classes, while the system
call and performance monitor features provide approximately
the same amount of discrimination. The plot also indicates that
each set of features exhibits a peak beyond which the accuracy
decreases, likely as a result of overfitting the decision tree
models to features that provide little to no discrimination. The
peak occurs at approximately 50 features for the performance
monitors, 30 features for the system calls, and 150 features
for the system call sequences. We use this reduced set of
features to obtain the detailed detection results presented in
the following section.

C. Labeling System Comparison

Finally, we compare the performance of our classifier using
each of the five different labeling systems. In this section, we
present results achieved using the 230 features described in
the preceding section and using T = 180 seconds of data.
Table I presents the classification accuracy achieved for each
of the five labeling schemes along with the number of distinct
labels in each scheme. The accuracy results indicate that, for
the Kaspersky and MMPC labels, the classification accuracy
increases with the specificity of the labeling systems, i.e., more
accurate results were achieved with the family labels than with
the category labels.

Table I also indicates that the classifier achieved its highest
accuracy when using the MMPC family labels, with the
MMPC labels providing significantly better accuracy than the
McAfee and Kaspersky family labels. To see why this is the
case, we examine the the per-label accuracy of the classifier
in terms of precision and recall.

We consider a particular class ck and the following three
quantities: tp, the number of malware samples in class ck



TABLE I
DETECTION ACCURACY OF CLASSIFIER USING EACH LABELING SCHEME

Label Distinct Accuracy(%)
Kaspersky categories 16 35.9
McAfee families 17 40.1
MMPC categories 13 44.9
Kaspersky families 35 45.0
MMPC families 32 66.8

correctly labeled by the classifier (true positives); fn, the
number of malware samples in class ck incorrectly labeled
by the classifier (false negatives); and fp, the number of
malware samples not in class ck that are incorrectly classified
as belonging to ck (false positives). We define the precision
and recall in terms of these three quantities as:

Precision =
tp

tp+ fp
(6)

Recall =
tp

tp+ fn
. (7)

Precision quantifies how often malware samples are incorrectly
identified as belonging to class ck, where low precision
means the classifier inforrectly classified a large contingent
of malware samples as belonging to ck. Recall is the fraction
of malware samples in class ck that are correctly identified by
the classifier.

We begin by discussing the McAfee family labels, which,
as shown in Table I, afforded an accuracy comparable to the
Kasperky and MMPC category labels. The reason that the
classifier using the McAfee labels underperformed the other
family labeling schemes lies in the fact that a large number
of the malware have generic labels in the McAfee family
labeling scheme: for example, Artemis (236 samples) and
Generic (122 samples). These labels exhibited both poor
precision (0.59 and 0.28) and recall (0.39 and 0.26), while
other labels defining specific malware families, e.g., Clidak
and PWS-Zbot, exhibited a higher precision (1.00 and 0.74)
and recall (0.75 and 0.69). The generic labels suffer from the
same deficiency of the category labels, namely that a single
generic label is often insufficient to describe a specific malware
sample.

Table II presents the precision and recall for each la-
bel in the Kaspersky family labeling scheme. When com-
pared to the McAfee labels, the Kaspersky labels pro-
vide more specific information about individual malware
families, resulting in an overall improvement in classifi-
cation accuracy. The results in Table II show that spe-
cific families, such as Trojan-Downloader.Genome
and Trojan-PSW.Tepfer exhibit both a high precision
and recall, indicating that the classifier was able to dis-
cern them from the rest of the group. Still others, such
as Backdoor.DarkKomet and Constructor.Zbot ex-
hibit high recall but low precision, indicating that the classifier
often misclassified other malware as belonging to these two
classes. Similar to the McAfee labels, the Kaspersky labels

TABLE II
DETAILED DETECTION RESULTS FOR KASPERSKY FAMILY LABELS

Label Precision Recall Samples
Backdoor.Agent 0 0 4
Backdoor.DarkKomet 0.56 0.93 15
Constructor.Zbot 0.41 1 7
Server-Proxy.CCProxy 0.88 1 7
Trojan-Banker.Agent 0.67 0.5 4
Trojan-Banker.Banbra 0.33 0.4 10
Trojan-Banker.Banker 0.33 0.14 7
Trojan-Clicker.Agent 0 0 5
Trojan-Downloader.Adload 0.75 0.43 7
Trojan-Downloader.Agent 0.28 0.22 23
Trojan-Downloader.Andromeda 0.4 0.86 7
Trojan-Downloader.Banload 0 0 6
Trojan-Downloader.Delf 0.33 0.2 5
Trojan-Downloader.Generic 0.15 0.4 10
Trojan-Downloader.Genome 0.88 1 22
Trojan-Dropper.Agent 0.33 0.47 19
Trojan-Dropper.Dapato 0.67 0.29 7
Trojan-Dropper.Injector 0.25 0.11 9
Trojan-PSW.Tepfer 0.94 0.79 19
Trojan-Ransom.Blocker 1 0.25 4
Trojan-Spy.KeyLogger 1 0.71 7
Trojan-Spy.Zbot 0.88 0.93 30
Trojan.Agent 0.05 0.04 28
Trojan.Agent2 0 0 6
Trojan.Bublik 0 0 6
Trojan.Crypt 0.07 0.14 7
Trojan.Generic 0.32 0.11 53
Trojan.Genome 0 0 4
Trojan.Inject 0 0 4
Trojan.Jorik 0.22 0.24 29
Trojan.StartPage 0.68 0.88 24
Trojan.VB 0 0 4
Trojan.VBKrypt 0.32 0.58 12
Worm.AutoRun 0.5 1 4
Worm.Ngrbot 0.5 0.86 7
Average 0.43 0.45

also contain generic labels that exhibit a particularly low
precision and recall, such as Trojan.Generic.

The precision and recall values for the MMPC family
labels are presented in Table III. The major reason
that the classifier using the MMPC labels outperforms
the classifiers using the McAfee or Kaspersky labels
is the lower concentration of malware with generic
labels. While the MMPC labeling scheme does include
some generic labels that exhibit a particularly low
precision and recall, such as Trojan.Comrerop,
Trojan.Malagent, TrojanDownloader.Banload,
and Trojan.Meredrop, the number of malware samples
described by these labels is much lower than in the Kaspersky
or McAfee labeling schemes.

Table III also indicates that the classification performance
varies for different labels, with some achieving perfect pre-
cision or recall (e.g., TrojanSpy.Zapemli) and others
having zero precision and recall (e.g., Backdoor.Farfli).
In general, the classes with the highest precision and recall are
those whose family labels define specific a specific set of func-
tionality or specific heritage, such as TrojanSpy.Zapemli,
PWS.Zbot, and Backdoor.Kelihos, and those exhibiting



TABLE III
DETAILED DETECTION RESULTS FOR MMPC FAMILY LABELS

Label Precision Recall Samples
Adware.Kremiumad 0.84 1 16
Backdoor.Farfli 0 0 4
Backdoor.Fynloski 0.71 0.96 28
Backdoor.IRCbot 0.4 0.5 4
Backdoor.Kelihos 0.94 1 15
HackTool.CCProxy 0.88 1 7
PWS.Fareit 0.8 0.67 6
PWS.OnLineGames 0.83 0.83 6
PWS.Zbot 0.9 0.95 39
Trojan.Comrerop 0 0 4
Trojan.Danginex 0.57 0.5 8
Trojan.Dynamer!dtc 0.29 0.29 7
Trojan.EyeStye 0.5 0.4 5
Trojan.Ircbrute 0.67 0.33 6
Trojan.Malagent 0 0 4
Trojan.Meredrop 0 0 5
Trojan.QHosts 1 0.8 5
Trojan.Sisron 0.5 0.25 8
Trojan.Urelas 1 0.25 4
TrojanClicker.Clidak 0.5 1 13
TrojanClicker.Delf 0.56 1 5
TrojanDownloader.Banload 0 0 8
TrojanDownloader.Small 0.59 0.76 17
TrojanProxy.Banker 0.5 0.2 5
TrojanSpy.Bancos 0.22 0.25 8
TrojanSpy.Banker 0 0 4
TrojanSpy.Zapemli 1 1 4
VirTool.DelfInject 0.33 0.12 8
VirTool.Obfuscator 0 0 6
VirTool.VBInject 0.62 0.62 8
Worm.Dorkbot 0.89 0.8 10
Worm.Gamarue 0.58 0.92 12
Average 0.61 0.67

the lowest precision and recall were those whose family labels
define only a broad category of functionality. For example,
the TrojanDownloader.Banload label is generically
defined as identifying Trojans that download other malware. In
order to achieve better classification performance for malware
in these categories, we will likely have to consider subfamily
identifiers within these categories that have a much more
narrow definition of the malware they contain. This is left
as the subject of future work as it requires multiple samples
within each of the distinct subfamilies.

Figure 6 shows the normalized confusion matrix for the
classifier using the MMPC family labels, where the row
labels indicate the ground truth and the column labels in-
dicate the labels assigned by the classifier. The shade in-
tensity indicates the percentage of the malware in each
row that are classified as the label indicated by the col-
umn name, where black indicates 100% and white indi-
cates 0%. For example, it shows that the malware labeled
Backdoor.Farfli by MMPC were misclassified most
often as Worm.Gamarue and Backdoor.IRCbot. That
the malware labeled Backdoor.IRCbot were also often
misclassified as Backdoor.Farfli is an indication that
these two malware families share behavioral similarities in
terms of the features used for classification. In fact, these two

Fig. 6. Normalized confusion matrix for MMPC family labels

families do share common features, such as DDoS function-
ality.

The confusion matrix also shows some useful information
about the generic labels. For example, it shows that
the Trojan.Comrerop samples were most often
misclassified as Backdoor.Fynloski, indicating
that these samples are either behaviorally similar to, or
variants of, Backdoor.Fynloski. It also shows that the
Trojan.Malagent, TrojanDownloader.Banload,
and Trojan.Meredrop samples are often misclassified as
a variety of different labels, indicating that the samples within
those families are behaviorally dissimilar and may belong to
different families.

The confusion matrix in Figure 6 lacks a category-level,
block-wise diagonal structure that would arise if misclassifi-
cations were more common among malware of the same cat-
egory. For example, the TrojanDownloader.Banload
samples are misclassified as Adware, Backdoors, and
Trojans. In this case, the misclassification may be due to the
nature of TrojanDownloaders, whose primary function is
to install additional malware. However, this lack of a block-
wise diagonal structure is a further indication that the category
labels are insufficient for describing newly classified malware.

The results presented in this section indicate that malware
whose labels define a specific heritage or set of behavioral
features are classified more accurately than malware whose
labels define a broad range of malicious behavior. The insuffi-
ciency of the category labels, combined with the fact that the
best performance was achieved for the families with the most
specific definitions, indicates that the overall performance of
the classifier might be able to be improved by separating more



general family definitions into subfamilies.

D. Automatic Mitigation

The goal of this work is to create a malware classification
system that determines the class of new, previously unseen
malware on production hosts by computing their behavioral
similarity to known malware. Once a new malware sample has
been classified, our goal is to apply automatic mitigations to
prevent data loss, data theft, or further spread of the malware.

To illustrate how the classifier using the MMPC family
labels can be used for automatic mitigation, we consider
the example of the fifteen Backdoor.Kelihos malware
samples used during our experimental evaluation. Kelihos is
a botnet used primarily for BitCoin theft and sending spam.
Accordingly, appropriate mitigation might include blocking
the ports used for sending spam or used for the command and
control of the botnet. Furthermore, the 15 variants we studied
during our experimental evaluation also exhibited common
behaviors, including using the same names for the processes
created during execution and making the same configura-
tion changes to the infected computer. Thus, terminating the
processes suspected to be associated with Backdoor.Kelihos,
deleting the executables that spawn the processes, and undoing
known configuration changes might also be effective mitiga-
tions to apply automatically.

Thus, the strategy for automatic mitigation is the following:
For canonical examples of malware families, appropriate mit-
igations are first developed in a controlled laboratory setting
through detailed malware analysis (or using existing documen-
tation such as that provided by AV vendors). The described
malware classification system will then apply the mitigations
whenever a newly detected malware sample is determined to
belong to one of these known families.

While our empirical observation indicates that such a set
of strategies might exist for the Backdoor.Kelihos sam-
ples (and other samples within well-defined categories), the
inconsistency in antivirus labeling systems and the inaccuracy
of our classifier for certain malware family labels indicates
that generic mitigation might be infeasible for other families
using the described labels. However, it might be possible to
perform mitigation at the subfamily level, where malicious
behaviors are more well-defined, or apply generic mitigations
such as isolation when a malware sample cannot be accurately
classified.

VI. DISCUSSIONS

We presented experimental results demonstrating how be-
havioral feature data can be used for online malware classi-
fication on hosts under heavy background computational load
and provided an example of how such classification results
could be used for mitigation. Yet, this study also raises a few
key questions and presents opportunities for future research.

The described classifier uses three distinct types of observ-
able features for the classification task, the majority of which
characterize host-wide behavior. It may be desirable consider

additional features, such as longer system call sequences, per-
formance data provided by other applications, or more specific
information about access to critical system resources, such as
the network and filesystem. Extracting features at the process
or thread level may also provide more accurate classification
results while also helping to identify the source of a detected
malware infection and thereby aiding in mitigation.

Next, the described system uses decision trees for classifi-
cation, which label each newly detected malware sample as
one of the existing labels learned during training. If a new
malware sample does not belong to one of the existing labels,
the decision trees will simply label it (incorrectly) with one
of the existing labels. To address the issue of new malware
samples that are not well-described by an existing label, we
have begun to evaluate other types of classifiers better suited
to this situation. For example, we have begun exploring the
use of the nearest centroid algorithm [28], which can be used
to establish a notion of distance from the centroids that define
the labels. Malware whose distance to the closest centroid
exceeds a threshold might be considered new malware that
warrant further analysis. To deal with the behavioral diversity
of malware having a particular label, we are exploring using
the k-means clustering algorithm [29] to establish multiple
centroids for characterizing each malware label and also
exploring the use of subfamily labels for classification.

For the 882 malware samples considered in our experi-
mental evaluation, the number of samples described by each
label varied significantly. For example, in the MMPC family
naming scheme, we studied four samples of Backdoor.Farfli
and 39 samples of PWS.Zbot. This disparity is largely driven
by the malware samples available to us for the evaluation:
For many malware samples, we only had a small number
of distinct variants within a class. The evaluation of the
described classifier on a larger malware corpus containing
more distinct malware variants within each family is a subject
of our ongoing work. Considering a larger corpus of malware
is also important for evaluating the the accuracy and usefulness
of the system for deployment in production environments.

Finally, the described experimental procedures were de-
signed to test the performance of the classifier under a heavy
and diverse load. While the type and intensity of the load
varies for each of the experimental runs, the entire experiment
is limited to a single system configuration. Thus, additional
work must be performed to characterize the performance
of the classifier on system with different configurations and
different load conditions. Particularly, a systematic study of
the background noise caused by the benign workload on a
host computer, and the effects the background noise has on
the detection and classification tasks, is necessary.

The work presented here is part of an ongoing effort to
create self-protecting servers that can automatically detect and
mitigate new malware threats. As part of this work, we intend
to continue to evaluate the described classifier on a larger
malware corpus and on a variety of different hosts, evaluating
the effects of changes in usage patterns and configuration on
the performance of the classifier. Particularly, we are interested



in establishing whether the classifier can be generalized to a
wide variety of host configurations and uses.

VII. CONCLUSIONS

We presented a behavioral malware classification system
designed to be deployed on production servers, using changes
in sets of observable behavioral features for online malware
classification. The system uses performance monitor data,
system call frequencies, and frequencies of pairs of system
calls as input features for the classifier. We presented the
results of an empirical evaluation of the classification system
using random forests to detect previously unseen malware
variants on live systems under heavy workloads, and analyzed
the accuracy of our system using different feature sets and
labeling schemes.

The presented results indicate that the behavioral classifier
can correctly identify new malware variants within certain
families of malware in the presence of a complex compu-
tational load. We intend to continue to develop and test
the described classification system, expanding our malware
corpus and refining our classification techniqes, evaluating
the classifier’s accuracy under different load conditions, and
developing training procedures appropriate for more general
deployment. This work is part of a larger effort to develop
a self-protecting system that can detect, classify, and miti-
gate malware infections, especially infections caused by new
variants of known malware that evade traditional antivirus
software.

VIII. ACKNOWLEDGMENTS

This research is sponsored by a Secure and Trustworthy Cy-
berspace (SaTC) award from the National Science Foundation
(NSF), under grant CNS-1228847.

REFERENCES

[1] M. Venable, A. Walenstein, M. Hayes, C. Thompson, and A. Lakhotia,
“Vilo: a shield in the malware variation battle,” in Virus Bulletin, 2007.

[2] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware:
from a survey towards an established taxonomy,” Journal in Computer
Virology, vol. 4, pp. 251–266, 2008, 10.1007/s11416-008-0086-0.
[Online]. Available: http://dx.doi.org/10.1007/s11416-008-0086-0

[3] R. Canzanese, M. Kam, and S. Mancoridis, “Inoculation against
malware infection using kernel-level software sensors,” in Proceedings
of the 8th ACM international conference on Autonomic computing, ser.
ICAC ’11. New York, NY, USA: ACM, 2011, pp. 101–110.

[4] ——, “Multi-channel change-point malware detection,” in Seventh Inter-
national Conference on Sofware Security and Reliability (SERE), 2013.

[5] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of Computer Security, vol. 6, no. 3,
pp. 151–180, 1998.

[6] R. Moskovitch, Y. Elovici, and L. Rokach, “Detection of unknown
computer worms based on behavioral classification of the host,”
Comput. Stat. Data Anal., vol. 52, pp. 4544–4566, May 2008.

[7] M. Schultz, E. Eskin, F. Zadok, and S. Stolfo, “Data mining methods
for detection of new malicious executables,” in Security and Privacy,
2001. S P 2001. Proceedings. 2001 IEEE Symposium on, 2001, pp. 38
–49.

[8] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify
malicious executables in the wild,” J. Mach. Learn. Res., vol. 7, pp.
2721–2744, December 2006.

[9] S. Cesare, Y. Xiang, and W. Zhou, “Malwise: An effective and efficient
classification system for packed and polymorphic malware,” Computers,
IEEE Transactions on, vol. 62, no. 6, pp. 1193–1206, 2013.

[10] K. Iwamoto and K. Wasaki, “Malware classification based on extracted
api sequences using static analysis,” in Proceedings of the Asian
Internet Engineeering Conference, ser. AINTEC ’12. New York, NY,
USA: ACM, 2012, pp. 31–38.

[11] Y. Park and D. Reeves, “Deriving common malware behavior through
graph clustering,” in Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ser. ASIACCS
’11. New York, NY, USA: ACM, 2011, pp. 497–502.

[12] Y. Zhong, H. Yamaki, and H. Takakura, “A malware classification
method based on similarity of function structure,” in Applications and
the Internet (SAINT), 2012 IEEE/IPSJ 12th International Symposium on,
2012, pp. 256–261.

[13] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, “A comparative
assessment of malware classification using binary texture analysis
and dynamic analysis,” in Proceedings of the 4th ACM workshop on
Security and artificial intelligence, ser. AISec ’11. New York, NY,
USA: ACM, 2011, pp. 21–30.

[14] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis
of malware behavior using machine learning,” Journal of Computer
Security, 2011.

[15] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated classification and analysis of internet malware,”
in Proceedings of the 10th International Symposium on Recent Advances
in Intrusion Detection (RAID’07), September 2007.

[16] I. Firdausi, C. Lim, A. Erwin, and A. Nugroho, “Analysis of machine
learning techniques used in behavior-based malware detection,” in
Advances in Computing, Control and Telecommunication Technologies
(ACT), 2010 Second International Conference on, 2010, pp. 201 –203.

[17] J. Hegedus, Y. Miche, A. Ilin, and A. Lendasse, “Methodology for
behavioral-based malware analysis and detection using random projec-
tions and k-nearest neighbors classifiers,” in Computational Intelligence
and Security (CIS), 2011 Seventh International Conference on, 2011,
pp. 1016–1023.

[18] T. Lee and J. J. Mody, “Behavioral classification,” in Proceedings of the
15th European Institute for Computer Antivirus Research (EICAR 2006)
Annual Conference, 2006.

[19] S. Nari and A. A. Ghorbani, “Automated malware classification based
on network behavior,” in Computing, Networking and Communications
(ICNC), 2013 International Conference on, 2013, pp. 642–647.

[20] N. Stakhanova, M. Couture, and A. Ghorbani, “Exploring network-
based malware classification,” in Malicious and Unwanted Software
(MALWARE), 2011 6th International Conference on, 2011, pp. 14–20.

[21] D. Lobo, P. Watters, and X. Wu, “Rbacs: Rootkit behavioral analysis
and classification system,” in Knowledge Discovery and Data Mining,
2010. WKDD ’10. Third International Conference on, 2010, pp. 75–80.

[22] B. Anderson, C. Storlie, and T. Lane, “Improving malware classification:
bridging the static/dynamic gap,” in Proceedings of the 5th ACM
workshop on Security and artificial intelligence, ser. AISec ’12. New
York, NY, USA: ACM, 2012, pp. 3–14.

[23] M. Neugschwandtner, P. M. Comparetti, G. Jacob, and C. Kruegel,
“Forecast: skimming off the malware cream,” in Proceedings of the
27th Annual Computer Security Applications Conference, ser. ACSAC
’11. New York, NY, USA: ACM, 2011, pp. 11–20.

[24] M. E. Russinovich, D. A. Solomon, and A. Ionescu, Windows Internals,
6th ed. Microsoft Press, April 2012, no. Part 1, 0735648735.

[25] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification and
Regression Trees. Chapman and Hall/CRC, 1984.

[26] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[28] Q. Zhang and S. Sun, “A centroid k-nearest neighbor method,” in
Proceedings of the 6th international conference on Advanced data
mining and applications: Part I, ser. ADMA’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 278–285.

[29] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.


